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Abstract

Applied data analysts regularly need to make use of regression analysis to understand de-

scriptive, predictive, and causal patterns in data. While many applications of ordinary least

squares yield estimated regression coefficients that are readily interpretable as the predicted

change in y due to a unit change in x, models that involve multiplicative interactions or other

complex terms are subject to less clarity of interpretation. Generalized linear models that

involve transformations of this linear predictor into binary, ordinal, count or other discrete out-

comes lack such ready interpretation. As such, there has been much debate in the literature

about how best to interpret these more complex models (e.g., what quantities of interest to

extract? what types of graphical presentations to use?). This article proposes that marginal

effects, specifically average marginal effects, provide a unified and intuitive way of describing

relationships estimated with regression. To begin, I briefly discuss the challenges of interpreting

complex models and review existing views on how to interpret such models, before describing

average marginal effects and the somewhat challenging computational task of extracting this

quantity of interest from regression results. I conclude with implications for statistical practice

and for the design of statistical software.
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Regression is a workhorse procedure in modern statistics. In disciplines like eco-

nomics and political science, hardly any quantitative research manages to escape the use

of regression modelling to describe patterns in multivariate data, to assess causal rela-

tionships, and to formulate predictions. Ordinary least squares (OLS) regression offers a

particularly attractive procedure because of its limited and familiar assumptions and the

ease with which it expresses a multivariate relationship as a linear additive relationship

between many regressors (i.e., predictors, covariates, or righthand-side variables) and a

single outcome variable. The coefficient estimates from an OLS procedure are typically

easily interpretable as the expected increase in the outcome due to a unit change in the

corresponding regressor.

This ease of interpretation of simple regression models, however, belies a potential for

immense analytic and interpretative complexity. The generality of the regression frame-

work means that it is easily generalized to examine more complex relationships, including

the specification of non-linear relationships between regressor and outcome, multiplica-

tive interactions between multiple regressors, and transformations via the generalized

linear model (GLM) framework.1 With this flexibility to specify potentially complex

multivariate relationships comes the risk of misinterpretation [4, 3] and, indeed, frequent

miscalculation of quantities of interest [1, 13]. Coefficient estimates in models that are

non-linear or involve interactions lose their direct interpretation as unconditional marginal

effects, meaning that interpretation of tabular or graphical presentations requires first un-

derstanding the details of the specified model to avoid interpretation errors. Coefficient

estimates in GLMs are often not directly interpretable at all.

For these reasons, and in the interest of making intuitive tabular and visual displays

of regression results, there is a growing interest in the display of substantively meaningful

quantities of interest that can be drawn from regression estimates [10]. This article

reviews the literature on substantive interpretation of regression estimates and argues

that researchers are often interested in knowing the marginal effect of a regressor on an

outcome. I propose average marginal effects as a particularly useful quantity of interest,

discuss a computational approach to calculate marginal effects, and offer the margins

package for R [11] as a general implementation.

The outline of this text is as follows: section 1 describes the statistical background of

regression estimation and the distinctions between estimated coefficients and estimated

marginal effects of righthand-side variables, Section 2 describes the computational imple-

mentation of margins used to obtain those quantities of interest, and Section 3 compares

the results of the package to those produced by Stata’s margins command [15, 19], and

various R packages.

1Further complexities arise from other expansions of the regression approach, such as interdependent
or hierarchically organized observations, instrumental variables methods, and so on.
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1 Statistical Background

The quantity of interest typically reported by statistical software estimation commands

for regression models is the regression coefficient (along with standard errors thereof,

and various goodness-of-fit and summary statistics). Consider, for example, a trivial

regression of country population size as a function of GDP per capita, life expectancy,

and the interaction of the two. (As should be obvious, this model is not intended to carry

any causal interpretation.)

Table 1: Example OLS Regression Output

Dependent variable:

Population Size

(1) (2)

loggdp −26.440∗∗∗ −12.095
(3.450) (11.748)

lifeExp 2.586∗∗∗ 4.412∗∗∗

(0.332) (1.468)

loggdp:lifeExp −0.231
(0.181)

Constant 91.543∗∗∗ −19.078
(17.060) (88.265)

Observations 1,704 1,704
R2 0.037 0.038
Adjusted R2 0.036 0.037
Residual Std. Error 104.212 (df = 1701) 104.193 (df = 1700)
F Statistic 33.092∗∗∗ (df = 2; 1701) 22.613∗∗∗ (df = 3; 1700)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This default output makes sense for additive linear models (i.e., ordinary least squares

regression) because an estimated coefficient is readily and directly interpretable as the

expected change in y given a unit change in x, holding all other terms constant (see,

for example, the coefficient estimates for model 1). A unit change in life expectancy is

associated with a population that is 2,586 larger. This marginal effect of life expectancy

is constant across observations in the dataset, constant across observed values of other

variables, and constant across levels of itself. The “effect” is thus unconditional.

When model specifications include other kinds of terms (e.g., multiple higher powers

of a given variable, log transformations, or interactions between variables), the coeffi-

cients on those variables do not and cannot clearly communicate the association between
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Figure 1: Expected Population (millions) by GDP/Capita and Life Expectancy

a given righthand-side variable and the outcome because that relationship is parameter-

ized through multiple coefficients. In model 2, for example, the relationship between life

expectancy and population is parameterized to account for heterogeneity due to GDP per

capita (and vice versa, the relationship between GDP per capita and population is param-

eterized to be heterogeneous across levels of life expectancy). The estimated coefficient

for life expectancy (4.412) only carries the meaning of an unconditional marginal effect

when logged GDP per capita (and thus the value of loggdp:lifeExp) is zero, which

is never. Looking at a single estimated coefficient and treating it as an unconditional

marginal effect leads to numerous problematic interpretations [4].

Visualization of the fitted values from the model makes clear that the two specifi-

cations are actually producing fairly similar substantive estimates. Figure 1 shows the

fitted response surface from model 1 (left) and model 2 (right). With the exception of the

fitted values at the intersection of very low levels of life expectancy and very high levels

of GDP per capita (where data are sparse), the two specifications yield nearly identical

substantive interpretations. Higher GDP per capita is associated with lower national

population, and higher levels of life expectancy are associated with higher national pop-

ulation. The ambiguous substantive meaning of the results in Table 1 is due to the fact

that the coefficients are not intepretable as marginal effects.

But what is a marginal effect exactly? And why is it a useful quantity of interest?

Figure 2 shows the calculation of the marginal effect of GDP per capita on population
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Figure 2: Marginal Effect of GDP per Capita on Population Size, as shown by Expected
Value Plot

size, based upon model 1 in Table 1. Because the model is specified without interactions,

the slope of the predicted relationship between x and y is straight linear, so the marginal

effect of x is estimated as the slope of this fitted value line, using the usual ∆Y
∆X

calculation

and can be calculated irrespective of the value of life expectancy. The visibly apparent

marginal effect of -26.4 is clearly consistent with the coefficient estimate reported in Table

1, model 1.

1.1 Generalized Linear Models

Furthermore, when models involve a non-linear transformation (e.g., generalized linear

models such as logit or probit), the coefficients are typically not directly interpretable

at all (even when no power terms, interactions, or other complex terms are included).

This is because the coefficients express the influence of each separate variable onto the

latent, linear scale of the outcome, not the discrete (or probability) scale of the observed

outcome [12]. For example, in a logistic regression, the coefficients express the marginal

effect of each included variable in terms of the change in log-odds that the outcome equals

1 given a unit change in the independent variable. In order to express the more intuitive

change in the predicted probability that the outcome equals 1 requires conditioning on

all other included variables (i.e., selecting a set of values for all righthand-side variables)

and running that set of values through the link function to convert log-odds to proba-
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bilities, thus making the marginal effect (in probability terms) of one variable a function

of all other variables included in the model. As such, for both OLS and GLMs, the co-

efficients estimated for a regression model can often provide unintuitive insight into the

statistical relationships between variables and, worse, can frequently fail to communicate

those relationships at all (as in GLMs, where the size of coefficients can be completely

uninformative about the size of the “effect” of a given righthand-side variable).

1.2 Quantities of Interest

Several quantities of interest may be derived from any regression model result. The

first and most obvious, are the coefficient estimates themselves (as have already been

discussed). Others include fitted or predicted values of the outcome generated from the

model estimates, first-differences or discrete changes, marginal effects or partial effects.

Among these, fitted (predicted) values communicate the shape and position of the

fitted regression surface (or line in a simple bivariate regression) across the possibly

multidimensional covariate space. In essence, if we express the regression estimates as a

function of X, ŷ = f̂(X), we can evaluate this function at any levels of the covariates.

Predicted values communicate what outcome value would be expected given the patterns

observed between covariates and the outcome. We might be interested in at least three

different quantities that can be calculated from the regression fit:

1. Fitted values at representative, or particular, values of X

2. Fitted values at the mean of X

3. “Average” fitted values

The first of these is simply the evaluation of the fitted value function f̂(X = x),

for some particular value x or combination of covariate values. This might be used,

for example, to describe what population we would expect to see for a country with a

particular combination of life expectancy and GDP values. It would simply report to us

the value of the population along the surface shown in Figure 1.

The second, fitted values at the mean of X, is a summary measure that chooses the

values of covariates based upon properties of the distribution of X rather than based on

some theoretical reason. Unfortunately, such a quantity is not particularly useful to know

because the multidimensional mean of X may not be an observed (or even observable)

value.

The third measure, average fitted values, calculates the value ŷ for every case in the

data and averages the resulting fitted values. The interpretation of this quantity is as

the average (or typical) outcome we would expect to observe were our model an accurate

representation of the data-generating process for the outcome.
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From these predicted values, one could generate a second class of quantities of interest:

discrete changes or “first differences.” As their name implies, this quantity expresses

the change in the predicted outcome that occurs with a given change in the value of

covariate(s). Common shifts might include the change in a value of a categorical variable

(e.g., from “male” to “female”) or a theoretical meaningful change in a numeric variable

(e.g., from its minimum to maximum values).

Finally, we may be interested in the marginal effect of a given variable: that is,

the slope of the regression surface with respect to a given covariate. The marginal effect

communicates the rate at which y changes at a given point in covariate space, with respect

to one covariate dimension and holding all covariate values constant. This quantity is

particularly useful because it is intuitive — it is simply a slope — and because it can be

calculated from essentially any set of regression estimates.

To calculate marginal effects requires the application of partial derivatives. A marginal

effect is, in essence, the slope of multi-dimensional surface with respect to one dimension

of that surface.2 Marginal effects are a particularly useful quantity of interest because, in

the case of OLS, they translate the coefficients estimated from any model parameteriza-

tion back into the quantity that is expressed by coefficients in any unconditional model:

namely the marginal contribution of x to the outcome. As with fitted values, we may be

interested in one of three different quantities of interest derived from marginal effects:

� Marginal effects at representative values (MERs)

� Marginal effects at means (MEMs)

� Average marginal effects (AMEs)

These quantities are analogous to the three fitted values quantities discussed earlier.

MERs calculate the marginal effect of each variable at a particular combination of X

values that is theoretically interesting. MEMs calculate the marginal effects of each

variable at the means of the covariates. AMEs calculate marginal effects at every observed

value of X and average across the resulting effect estimates.

AMEs are particularly useful because — unlike MEMs — produce a single quantity

summary that reflects the full distribution of X rather than an arbitrary prediction.

Together with MERs, AMEs have the potential to convey a considerable amount of

information about the influence of each covariate on the outcome. Because AMEs average

across the variability in the fitted outcomes, they can also capture variability better than

MEMs. While MERs provide a means to understand and communicate model estimates

at theoretically important combinations of covariate values, AMEs provide a natural

summary measure that respects both the distribution of the original data and does not

rely on summarizing a substantively unobserved or unobservable X value (as in MEMs).

2In practice, when categorical covariates are used in a model, the “marginal effect” label is applied
to quantities calculated as discrete changes.
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1.3 Response to Earlier Critiques

It is worth noting that (author?) [10] make a strong case against marginal effects cal-

culations premised largely on two points: (1) the computational challenge of calculating

marginal effects, and (2) the common (at that time) omission of statements of uncer-

tainty in the presentation of derivative-based quantities of interest (see, for example,

displays in (author?) 12). While the former is challenging, the next section discusses

various computational approaches to derivation including an approximation that is fully

general. margins provides a first-of-its-kind implementation of this approach in the R

language. This technical innovation makes this concern less problematic than it once

was. With respect to the latter critique, the subsequent section then discusses the delta

method approach to approximating variances of marginal effects, something (author?)

[10] discuss but dismiss. While margins adopts a delta method approach, the simula-

tion method described by these authors is also implemented as an alternative, alongside

a third alternative (bootstrapping).

2 Computational Details

This section describes the basic computational features of margins, which offers a

fully general approach to estimating marginal effects from an arbitrary modelling re-

sult. Specifically, it describes the procedures for calculating marginal effects from the

information stored in a model object (e.g., an R object of class "lm" or "glm") and the

procedures for estimating the variances of those marginal effects.

2.1 Symbolic Derivatives

If we were to calculate marginal effects by hand, we might rightly choose to rely on

manual or “symbolical” differentiate (i.e., using a set of known derivation rules, derive

the partial derivative of a regression equation with respect to its constituent variables).

The advantage of this approach is that, with the exception of any human error, pro-

duces numerically perfect calculations of the marginal effects. Yet this approach is not

particularly easy to implement computationally. It may seem straightforward, but even

in relatively simple regression specifications, the formulae for marginal effects quickly

become complicated.

Consider, for example, the three regression equations shown in the first column of

Table 2. The first includes a simple two-way multiplicative interaction term, the second

includes a power term, and the third includes a three-way interaction and its constituent

two-way interactions. The formula for the marginal effect with respect to each variable in

each equation is shown in the third column. While the equations vary in their complexity,
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Table 2: Marginal Effect Formulae for a Few Simple Regression Equations

Regression Equation ME with
respect to

ME Formula

(1) Ŷ = β0 + β1X1+

β2X2 + β3X1X2

X1
∂Y

∂X1

= β1 + β3X2

X2
∂Y

∂X2

= β2 + β3X1

(2) Ŷ = β0 + β1X1+

β2X
2 + β3X2

X1
∂Y

∂X1

= β1 + 2β2X1

X2
∂Y

∂X2

= β3

(3) Ŷ = β0 + β1X1 + β2X2+

β3X3 + β4X1X2+

β5X2X3 + β6X1X3+

β7X1X2X3

X1

∂Y

∂X1

=β1 + β4X2+

β6X3 + β7X2X3

X2

∂Y

∂X2

=β2 + β4X1+

β5X3 + β7X1X3

X3

∂Y

∂X3

=β3 + β5X2+

β6X1 + β7X1X2
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the key intuition to draw is that calculating a marginal effect from an equation of any

complexity requires three steps:

1. Identify which coefficients are attached to terms that include the variable of interest,

x

2. Using a set of derivative rules, specify the partial derivative of the equation with

respect to x

3. Implement the partial derivative equation computationally

As should be clear from the formulae in the third column, the first step is fairly

easy (though potentially error-prone), the second requires only knowledge of fairly basic

derivation, and the third requires simply expressing an additive formula as code. For

example, the three marginal effects for Equation (3) in Table 2 are simply:

library("stats")

m <- lm(y ~ x1 * x2 * x3)

cf <- coef(m)[-1] # drop beta_0

me_x1 <- cf[1] + cf[4]*x2 + cf[6]*x3 + cf[7]*x2*x3

me_x2 <- cf[2] + cf[4]*x1 + cf[5]*x3 + cf[7]*x1*x3

me_x3 <- cf[3] + cf[5]*x2 + cf[6]*x1 + cf[7]*x1*x2

The code necessary to perform these calculations is simple, but it is sensitive to human

error. And if the model is modified, the positions of coefficients may change, breaking

code. Furthermore, the second analytic step (defining the partial derivatives according to

a set of derivation rules) is actually extremely complicated, at least in order to handle any

general class of model formulae. The challenges are quickly apparent in the complexity

of the code for deltaMethod() from the car package [8], which attempts to implement

symbolic derivation for model formulae. In computational terms, this is especially true

when considering the fairly limited information contained in the formula expression used

to specify the model (y ~x1 * x2 * x3).

If we were able to fully expand that notation and introduce placeholders for coeffi-

cients, then R’s symbolic derivative function (deriv()) could return accurate specifica-

tions of the three marginal effects as expressions shown in the .grad[, "x1"], .grad[,

"x1"], etc.:

deriv(y ~ b1*x1 + b2*x2 + b3*x3 + b4*x1*x2 +

b5*x2*x3 + b6*x1*x3 + b7*x1*x2*x3,

c("x1", "x2", "x3"))

## expression({

## .expr6 <- b4 * x1
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## .expr9 <- b5 * x2

## .expr12 <- b6 * x1

## .expr15 <- b7 * x1

## .expr16 <- .expr15 * x2

## .value <- b1 * x1 + b2 * x2 + b3 * x3 + .expr6 * x2 + .expr9 *

## x3 + .expr12 * x3 + .expr16 * x3

## .grad <- array(0, c(length(.value), 3L), list(NULL, c("x1",

## "x2", "x3")))

## .grad[, "x1"] <- b1 + b4 * x2 + b6 * x3 + b7 * x2 * x3

## .grad[, "x2"] <- b2 + .expr6 + b5 * x3 + .expr15 * x3

## .grad[, "x3"] <- b3 + .expr9 + .expr12 + .expr16

## attr(.value, "gradient") <- .grad

## .value

## })

But, this is prone to the same limitations as the manual calculation of marginal

effects, shown above, wherein human error and iterative changes to the model easily

produce incorrectly results.

A further challenge arises due to the terse syntax needed to express a complex model

in R’s modelling language — the “formula” class, derived from GENSTAT [18]. It is quite

easy to express a model for which the mapping of righthand-side variables to coefficients is

completely intransparent, such as y 0 - (x1 + x2) * (x3 + x4). Additional sources

of useful generality in the language, such as the expression of “factors” (categorical vari-

ables via factor()) and on-the-fly variable transformations through I() statements,

impede symbolic derivation. These useful features mean it is possible to express a model

in formula markup for which no symbolic derivative rule is available, such as Equation

(2) in Table 2:

deriv(y ~ b1*x1 + b2*I(x1^2) + b3*x2, c("x1", "x2"))

Error in deriv.formula(y ~ b1 * x1 + b2 * I(x1^2) + b3 * x2, c("x1", "x2")) :

Function 'I' is not in the derivatives table

and for which any reasonable workaround would produce an inaccurate set of symbolically

arrived at partial derivatives.3 For example, we could define a new variable x1squared

equal to x2
1, but the symbolic differentiation rules are blind to the underlying relationship

between x1 and the new variable:

3The result of deriv(y ~b1*x1 + b2*x1^2 + b3*x2, c("x1", "x2")) is correct, but would require
recognizing when I() is and is not meaningful in a formula and modifying it accordingly.
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deriv(y ~ b1*x1 + b2*x1squared + b3*x2, c("x1", "x2"))

## expression({

## .value <- b1 * x1 + b2 * x1squared + b3 * x2

## .grad <- array(0, c(length(.value), 2L), list(NULL, c("x1",

## "x2")))

## .grad[, "x1"] <- b1

## .grad[, "x2"] <- b3

## attr(.value, "gradient") <- .grad

## .value

## })

The marginal effect arrived at symbolically ignores that the effect of x1 depends on the

value of itself because of the additional squared term. By breaking the relationship

between x1 and its squared term, x2
1, the derivative rules lead us to a plainly inaccurate

result (that the marginal effect of x1 is simply β1).

2.2 Numerical Derivatives

What then can be done? A standard answer — and the answer chosen by Stata’s margins

command [15] — is to rely on numerical derivatives (i.e., numeric approximations of the

partial derivatives). The R margins package follows this approach.

What is a numerical approximation? Rather than defining a partial derivative as an

exact formula using symbolic derivation rules, a numerical derivative approximates the

slope of the response function from a model by taking small steps, h in x, calculating

the ŷ at each point, and then applying a simple difference method to define the slope at

point x:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(1)

While seemingly crude, as h lim 0, the result converges on the true partial derivative

and every value of x and requires no knowledge of formula for the partial derivative(s).

To provide some intuition, Figure 3 displays a few numerical derivatives of f(x) = x2 at

the point x = 1 for various large values of h (2.0, 1.0, 0.5, 0.25). As should be clear, as

h decreases, the approximations approach the true slope of the derivative, f ′(x) = 2 ∗ x,
which is 2. Inferring the partial derivative across the full domain of x requires repeating

this approximation process at every substantively meaningful value of x.

At large values of h and even fairly small ones, this “one-sided” derivative can be

quite inaccurate. A “two-sided” or “symmetric difference” approach uses points above

and below x:
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Figure 3: Approximation of Derivative via One-Sided Numerical Approach

f ′(x) = lim
h→0

f(x+ h)− f(x− h)

2h
(2)

This approach, which is shown in Figure 4, will tend to be more accurate. As it so

happens, for the function f(x) = x2, this approach calculates f ′(x) accurately even for

very large values of h.

Computationally, this two-sided numerical approximation is achieved via R’s predict()

method, which provides (for a given model result) the fitted value Ŷ for every observa-

tion in a data frame.4 In essence, predict() represents the equation Ŷ = f(X) as the

function of a model object (containing coefficient estimates) and a data frame (defaulting

the original data used in estimation, such that fitted(model) and predict(model) are

equivalent). This means that margins can produce marginal effects estimates for any

model object class that offers a predict() method.

At a low level, margins provides a function, dydx(), which implements the numerical

derivative procedure. Taking a model object, model, and data frame, data, as input,

the function calculates a value of h that accounts for floating point errors (the internal

function setstep(),5 shown below), generates two data frames d0 (representing f(x −
h)) and d1 (representing f(x + h)), calls predict() on d0 and d1, and calculates the

4margins provides a type-consistent wrapper for this, called prediction() that always returns a
data frame (rather than a vector or list of fitted values).

5A relatively large value of h is used by default: sqrt(1x10−7). Alternative values can be specified
manually.
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Figure 4: Approximation of Derivative via Two-Sided Numerical Approach

numerical derivative from the resulting fitted Ŷ values according to a two-sided numerical

approximation:

d0 <- d1 <- data

...

d0[[variable]] <- d0[[variable]] - setstep(d0[[variable]])

d1[[variable]] <- d1[[variable]] + setstep(d1[[variable]])

...

P0 <- prediction(model = model, data = d0, type = type)[["fitted"]]

P1 <- prediction(model = model, data = d1, type = type)[["fitted"]]

...

out <- (P1 - P0) / (d1[[variable]] - d0[[variable]])

The result is a vector of marginal effects estimates — the marginal effect at every ob-

served combination of X in the data. This low-level function is wrapped within a function

margins(), which is an S3 generic with methods for various common modelling proce-

dures. margins() calculations marginal effects of all variables used in a model, along

with their variances, and accommodates the estimation of those effects across arbitrary

values of X variables (emulating Stata’s margins, at() notation). Calling dydx() or

marginal effects() provides a means to calculate marginal effects without specify-

ing new data or calculating variances, which can be time-consuming. The output of
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margins() is a “data.frame” with an additional “margins” class, that contains the orig-

inal input data, the fitted values from the model, and the marginal effects estimates for

each observation:

str(mar2 <- margins(m2))

## Classes 'margins' and 'data.frame': 1704 obs. of 15 variables:

## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...

## $ continent : Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...

## $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...

## $ lifeExp : num 28.8 30.3 32 34 36.1 ...

## $ pop : num 8.43 9.24 10.27 11.54 13.08 ...

## $ gdpPercap : num 779 821 853 836 740 ...

## $ loggdp : num 6.66 6.71 6.75 6.73 6.61 ...

## $ fitted : num -16.83 -13.41 -9.4 -3.23 5.18 ...

## $ se.fitted : num 8.93 8.27 7.63 6.99 6.58 ...

## $ dydx_loggdp : 'marginaleffect' num -18.7 -19.1 -19.5 -20 -20.4 ...

## $ dydx_lifeExp : 'marginaleffect' num 2.87 2.86 2.85 2.86 2.89 ...

## $ Var_dydx_loggdp : num 12.1 12.1 12.1 12.1 12.1 ...

## $ Var_dydx_lifeExp: num 0.112 0.112 0.112 0.112 0.112 ...

## $ _weights : num NA NA NA NA NA NA NA NA NA NA ...

## $ _at_number : int 1 1 1 1 1 1 1 1 1 1 ...

## - attr(*, "vcov")= num [1:2, 1:2] 12.126 -0.945 -0.945 0.112

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:2] "dydx_loggdp.1" "dydx_lifeExp.1"

## .. ..$ : chr [1:2] "dydx_loggdp.1" "dydx_lifeExp.1"

## - attr(*, "jacobian")= num [1:2, 1:4] 0.00 -4.44e-09 1.00 1.78e-08 0.00 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:2] "dydx_loggdp.1" "dydx_lifeExp.1"

## .. ..$ : chr [1:4] "(Intercept)" "loggdp" "lifeExp" "loggdp:lifeExp"

## - attr(*, "type")= chr "response"

## - attr(*, "call")= language lm(formula = pop ~ loggdp * lifeExp, data = gapminder)

## - attr(*, "model_class")= chr "lm"

## - attr(*, "vce")= chr "delta"

## - attr(*, "weighted")= logi FALSE

Attributes contain some additional information about the procedure. By default the

AMEs are printed and a summary() method provides a more complete output that is

useful for interactive sessions:
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mar2

## Average marginal effects

## lm(formula = pop ~ loggdp * lifeExp, data = gapminder)

## loggdp lifeExp

## -25.83 2.528

summary(mar2)

## factor AME SE z p lower upper

## lifeExp 2.5280 0.3345 7.5570 0.0000 1.8723 3.1836

## loggdp -25.8320 3.4823 -7.4181 0.0000 -32.6572 -19.0068

For users of Stata’s margins command, this output should look very familiar.

A few final points about the computational details of margins are worth noting.

First, much numerical differentiation in R is conducted using the numDeriv package.

This approach is not used here because numDeriv is not vectorized and is thus quite

slow. The issue arises because numDeriv calculates f(x− h) and f(x+ h) via for-loop,

iterating over observations in a data set. margins provides a significant performance

enhancement by using the vectorized procedures shown above.

Second, margins detects the class of variables entered into a regression, distinguish-

ing numeric variables from factor, ordered, and logical. For the non-numeric classes,

discrete differences rather than partial derivatives are reported as the partial derivative

of a discrete variable is undefined. For factors (and “ordered”) variables, changes are

expressed moving from the base category to a particular category (e.g., from male to

female, high school to university education, etc.). For logical variables, discrete changes

are expressed moving from FALSE to TRUE. The treatment of ordered variables (in essence

treating them as factors) differs from R’s default behavior.

Third, the type argument accommodates different quantities of interest in non-linear

models, such as generalized linear models. For a logistic regression model, for example,

we may want to interpret marginal effects (sometimes “partial effects”) on the scale of

the observed outcome, so that we can understand the marginal effects as changes in the

predicted probability of the outcome. By default, margins sets type = "response".

This can, however, be modified. For GLMs, this could be set to type = "link" in order

to calculate true marginal effects on the scale of the linear predictor.

And, finally, instead of the default instantaneous marginal effects, discrete changes

can be requested for numeric X variables, by specifying the change argument to the

workhorse dydx() function, which allows for expression of changes from observed min-

imum to maximum, the interquartile range, mean +/- a standard deviation, or any
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arbitrary step.

2.3 Variance Approximation with the Delta Method

Calculating the variances of marginal effects is — like the calculation of marginal effects

themselves — possible if one can easily express and compute a marginal effect symboli-

cally. But just as a general solution to the problem of marginal effect calculation quickly

necessitated a numerical approximation, so too does the calculation of variances in that

framework.

The first step is to acknowledge that the marginal effects are nested functions of X.

Consider, for example, Equation 1 in Table 2, which provides two marginal effects:6

ME(X1) =
∂Y

∂X1

= f ′
1(X) = g1(f(X)) (3)

ME(X2) =
∂Y

∂X2

= f ′
2(X) = g2(f(X)) (4)

To calculate the variances of these marginal effects, margins relies on the delta method

to provide an approximation (following the lead of Stata). The delta method provides

that the variance-covariance matrix of the marginal effect of each variable on Y is given

by:

V ar(ME) = J × V ar(β)× J ′ (5)

where V ar(β) is the variance-covariance matrix of the regression coefficients, estimated by

V ar(β̂) and the Jacobian matrix, J , is an M -x-K matrix in which each row corresponds

to a marginal effect and each column corresponds to a coefficient:

J =



∂g1
∂β0

∂g1
∂β1

∂g1
∂β2

. . . ∂g1
∂βK

∂g2
∂β0

∂g2
∂β1

∂g2
∂β2

. . . ∂g2
∂βK

. . .

∂gM
∂β0

∂gM
∂β1

∂gM
∂β2

. . . ∂gM
∂βK


Intuition surrounding the Jacobian can be challenging because the entries are partial

derivatives of the marginal effects with respect to the β’s, not the X’s. Thus it involves

the somewhat unintuitive exercise of treating the coefficients (β’s) as variables and the

original data variables (X’s) as constants. Continuing the running example, the Jacobian

for the two marginal effects of Equation (1) in Table 2 would be a 2-x-4 matrix, where

6It would, of course, be possible to specify marginal effects with respect to other X variables but
because they are not included in the regression equation, the marginal effects of all other variables are,
by definition, zero.
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the first column (expressing the partial derivative of each marginal effect with respect to

the intercept) is always zero:

J =

0 1 0 X2

0 0 1 X1


such that V ar(ME) is:

[
0 1 0 X2

0 0 1 X1

]
×


V ar(β0) Cov(β0, β1) Cov(β0, β2) Cov(β0, β3)

Cov(β0, β1) V ar(β1) Cov(β1, β2) Cov(β1, β3)

Cov(β0, β2) Cov(β1, β2) V ar(β2) Cov(β2, β3)

Cov(β0, β3) Cov(β1, β3) Cov(β2, β3) V ar(β1)

×


0 0

1 0

0 1

X2 X1


Multiplying this through, we arrive at a 2-x-2 variance-covariance matrix for the marginal

effects:  V ar(ME(X1)) Cov(ME(X1),ME(X2))

Cov(ME(X1),ME(X2)) V ar(ME(X2))


where

V ar(ME(X1)) = V ar(β1) + 2X2Cov(β1, β3) +X2
2V ar(β1))

V ar(ME(X2)) = V ar(β2) + 2X1Cov(β2, β3) +X2
1V ar(β1)

Cov(ME(X1),ME(X2)) = Cov(β1, β2) +X2Cov(β2, β3)+

X1Cov(β1, β3) +X1X2V ar(β1)

To achieve this computationally, margins uses a numerical approximation of the

Jacobian. The computational details necessary to express this for any regression model

are similar to those for approximating the marginal effects themselves. This is achieved

by creating a “function factory” that accepts data and a model object as input and

returns a function that holds data constant at observed values, but modifies the estimated

coefficients according some new input, applying predict() to the original data and

modified coefficients.7 The same numerical differentiation methods as above are then

applied to this function, to approximate the Jacobian.8

7This re-expresses g(x, β) as a function only of coefficients: g(β), holding x constant.
8As a computational note, margins uses the standard variance-covariance matrix returned by any

modelling function as the value of V ar(β̂) but also alternative values to be specified via vcov argument
to margins().
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Type Function Behavior

Core

dydx() Calculate marginal effect of one, named
variable

marginal effects() Calculate marginal effects of all variables
in a model

margins() An S3 generic to calculate marginal effects
for all variables and their variances

Visualization

plot.margins() An analogue to Stata’s marginsplot com-
mand that plots calculated marginal ef-
fects.

cplot() An S3 generic that plots conditional fitted
values or marginal effects across a named
covariate

persp.lm(), etc. S3 methods for the persp() generic that
provide three-dimensional representations
akin to cplot() but for two covariates

image.lm(), etc. S3 methods for the image() generic
that produce flat representations of the
persp() plots

Utilities build margins() The workhorse function underlying
margins() that assembles the response
"margins" object for one data frame
input.

Table 3: Functions in the margins Package

3 Package Functionality

At its core, margins offers one function: an S3 generic margins() that takes a model

object as input and returns a list of data frames of class "margins", which contain

the original data, fitted values, standard errors of fitted values, marginal effects for all

variables included in the model formula, and variances of those marginal effects. The

internals of this function are mostly exported from the package to allow users to calculate

just the marginal effects without the other data (using marginal effects(), to calculate

the marginal effect of just one variable (using dydx()), and to plot and summarize the

model and marginal effects in various ways (using cplot(), and plot(), persp(), and

image() methods). Table 3 provides a full list of exported functions and a brief summary

of their behavior.

At present, margins() methods exist for objects of class "lm", "glm", and "loess".

The margins.default() method may work for other object classes, but is untested. The

use of the package is meant to be extremely straight forward and to be consistent across

model classes. To use it, one needs only specify estimate a model using, for example,

glm(), and then pass the resulting object to margins() to obtain the marginal effects
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estimates as "margins" object. For interactive use, the summary.margins() method will

be useful:

library("datasets")

m <- lm(mpg ~ wt + am + factor(cyl), data = mtcars)

margins(m)

## Average marginal effects

## lm(formula = mpg ~ wt + am + factor(cyl), data = mtcars)

## wt am cyl6 cyl8

## -3.15 0.1501 -4.257 -6.079

summary(margins(m))

## factor AME SE z p lower upper

## am 0.1501 1.3001 0.1155 0.9081 -2.3980 2.6982

## cyl6 -4.2573 1.4112 -3.0167 0.0026 -7.0233 -1.4913

## cyl8 -6.0791 1.6837 -3.6105 0.0003 -9.3791 -2.7791

## wt -3.1496 0.9080 -3.4685 0.0005 -4.9293 -1.3699

By default, print.margins() shows the AMEs for each variable. Factor variables are

handled automatically by expressing their influence as discrete changes in the outcome

moving from the base category to each other category. The summary.margins() output

shows the AMEs, along with corresponding standard errors, z-statistics, p-values, and a

95% confidence interval.9

To obtain average MERs (an AME with the value of one or more covariates replaced

by a theoretically interesting value), users can specify the at option to margins(). In

effect, this uses build datalist() to create a list of data frames to be used as input to

marginal effects() and calculates the marginal effects of every variable separately for

each dataset. This can be useful to understand, for example, what the marginal effect of

a vehicle’s weight is on its fuel efficiency, separately for manual and automatic vehicles,

when the relationship between weight and fuel economy is possibly non-linear:

m <- lm(mpg ~ wt * am + I(wt^2) * am, data = mtcars)

summary(margins(m, at = list(am = 0:1)))

## factor am AME SE z p lower upper

## am 0.0000 -3.5045 2.8401 -1.2340 0.2172 -9.0710 2.0619

9The confidence level can be changed by setting level = beta, such as summary(margins(m), level

= 0.67) to obtain a 67% CI.
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## am 1.0000 -3.5045 2.8386 -1.2346 0.2170 -9.0681 2.0590

## wt 0.0000 -5.3281 1.8968 -2.8090 0.0050 -9.0457 -1.6105

## wt 1.0000 -9.6730 3.1983 -3.0244 0.0025 -15.9415 -3.4045

The plotting functionality provided by margins can be particularly useful for un-

derstanding models and the contribution of each covariate to the outcome. Consider for

example, a model involving a simple interaction between two covariates. To understand

the effect of each, we can calculate AMEs:

m <- lm(mpg ~ wt * I(wt^2) * hp * I(hp^2), data = mtcars)

margins(m)

## Average marginal effects

## lm(formula = mpg ~ wt * I(wt^2) * hp * I(hp^2), data = mtcars)

## wt hp

## -3.936 -0.04343

But we can also display the results visually to better understand the results. For example,

cplot() will show the predicted value of the outcome across levels of covariates:

cplot(m, "wt")

cplot(m, "hp")
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The persp() method will show the same but as a three-dimensional surface and the

image() method will present that information as a two-dimensional “heatmap”-style

format:

persp(m, "wt", "hp")

image(m, "wt", "hp")
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These plots all show fitted values, thereby indirectly communicating marginal effects. To

show marginal effects themselves, one can use the plot.margins() method to simply

show the average marginal effects visually:
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m <- lm(mpg ~ wt + am + factor(cyl), data = mtcars)

plot(margins(m))

−10

−8

−6

−4

−2

0

2

A
ve

ra
ge

 M
ar

gi
na

l E
ffe

ct

wt am cyl6 cyl8

And the cplot(), persp(), and image()methods can be modified to request marginal

effects rather than fitted values by setting the what = "effect" argument:

m <- lm(mpg ~ wt * I(wt^2) * hp * I(hp^2), data = mtcars)

cplot(m, "wt", what = "effect")
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All of the plotting functions in the package return data structures, which can also

be passed to other plotting tools (such as ggplot2). The LinRegInteractive package

provide an alternative set of visualization methods but calculates marginal effects in a

quite different way.

3.1 Comparison with Other R Packages

Several existing R packages attempt to estimate quantities of interest, such as marginal

effects, but all have limitations. For example, the car package noted above is constrained

by its use of symbolic derivatives to the calculation of only particular combinations of ef-

fects that can be clearly expressed symbolically. This approach appears to also be used by

the effects package, which provides various functions for describing fitted values and pro-

ducing plots from those quantities. (Much of that plotting functionality can be achieved

through margin’s cplot() function.) The package is somewhat intransparent in its ap-

proach and has an extensive list of explicit limitations about functionality. lsmeans can

be used to calculate predictive means (or “predictive margins”) from linear, generalized

linear, and mixed models, as well as calculate “first-difference” style contrasts between

tehse predictions (something margins achieves using dydx() using alternative change

arguments).

Other packages show some promise but seem to fail in common situations. For exam-

ple, the mfx package [7] provides several functions for calculating marginal effects from

common GLMs (logit, probit, poisson, negative-binomial, beta) but does not properly
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account for the interdependence between terms included in multiplicative interactions.

For example:

> library("mfx")

> library("datasets")

> mfx1 <- glm(vs ~ disp * drat, data = mtcars, family = binomial)

> logitmfx(mfx1, mtcars)

Call:

logitmfx(formula = x, data = mtcars)

Marginal Effects:

dF/dx Std. Err. z P>|z|

disp -0.00061817 0.00721983 -0.0856 0.9318

drat -0.24921775 0.37514481 -0.6643 0.5065

disp:drat -0.00158312 0.00233612 -0.6777 0.4980

The erer package [16] suffers the same error:

> library("erer")

> maBina(x)

> x <- glm(vs ~ disp * drat, data = mtcars, family = binomial, x = TRUE)

> maBina(x)

effect error t.value p.value

(Intercept) 2.060 1.571 1.311 0.200

disp -0.001 0.007 -0.086 0.932

drat -0.249 0.375 -0.664 0.512

disp:drat -0.002 0.002 -0.678 0.504

The DAMisc package [2] specifically offers a function, intEff() for handling interac-

tions. It, unfortunately, returns an ambiguous value of the “interaction effect” for each

observation in a dataset that does not appear to correspond to the marginal effect for

either term in the model:

> library("DAMisc")

> head(intEff(x, c("disp", "drat"), data = mtcars))

int_eff linear phat se_int_eff zstat

Mazda RX4 -0.0034080006 -3.151623e-03 0.502369027 0.018382454 -0.1853942

Mazda RX4 Wag -0.0034080006 -3.151623e-03 0.502369027 0.018382454 -0.1853942

Datsun 710 -0.0079522078 -5.750136e-04 0.952093495 0.004907381 -1.6204588

Hornet 4 Drive 0.0183101233 -2.482300e-03 0.269570094 0.021788290 0.8403653

Hornet Sportabout 0.0007426565 -3.380259e-05 0.002688532 0.001359246 0.5463739

Valiant -0.0167213771 -1.333991e-03 0.879716441 0.008581226 -1.9486000
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Additionally, the interflex, interplot [14], and plotMElm [9] packages offer visualiza-

tion functionality specifically for displaying results of models that include multiplicative

interaction terms but do not provide general interfaces for calculating marginal effects

from arbitrary models. The latter package only handles linear models. modmarg is

a newer package that appears to provide comparable functionality to margins [17]. in-

teractionTest [6] offers a useful fdrInteraction() for calculating a t-statistic that

limits the false discovery rate for a marginal effect based on an interaction, but only

works in the case of two-way interaction terms. Relatedly, visreg [5] provides a lat-

tice-based visualization function, visreg() to visualize predicted values from models in

sometimes complex ways. margins attempts to emulate some of this in the cplot()

function. condvis and LinRegInteractive offer interactive visualization functionality

for examining “conditional expectation” plots and surfaces, akin to both cplot() and

the persp() methods offered in margins.

3.2 Comparison with Stata

As an aside, Stata relies on symbolic derivatives for calculating marginal effects for OLS

models (and numerical derivatives in all other cases). This is made possibly by the fact

that Stata offers a much less expressive modelling language that broadly allows only

two variable times: continuous (denoted by a c. prefix) and factor (denoted by a i.

prefix), enables simple interactions either explicitly (as x1#x2, akin to R’s x1:x2) or

implicitly (as x1##x2, akin to R’s x1*x2), and disallows formula-based transformations

(R’s I() notation). Thus the calculation of marginal effects is simplified by significantly

constraining the number of possible models that can be specified and thus the necessary

sophistication of a symbolic derivation procedure.

The result is a syntax that can quickly and easily be used to calculate marginal effects

for essentially any regression model:

. quietly reg pop gdpPercap

. margins, dydx(*)

Average marginal effects Number of obs = 1,704

Model VCE : OLS

Expression : Linear prediction, predict()

dy/dx w.r.t. : gdpPercap

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. t P>|t| [95% Conf. Interval]
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-------------+----------------------------------------------------------------

gdpPercap | -275.6895 260.9549 -1.06 0.291 -787.5156 236.1366

------------------------------------------------------------------------------

A downside of Stata’s limited expressiveness becomes obvious when one considers a

variable that is transformed for some specific modelling purpose but for which substantive

interpretations are desired on the original scale. For example, one may log transform

a covariate but desire to know the marginal effect of that variable (rather than the

marginal effect of its logged form). Stata provides no easy means to achieve this; it only

allows the pre-calculation of a new variable, breaking the program’s ability to recognize a

relationship between a variable and its transformed form. margins, by contrast, makes

this simple. Consider, for example, the two regression models show in Table 4, which are

identical except that model (1) is calculated from a pre-transformed value of GDP per

capita and model (2) is calculated from a transformation expressed via I() notation in

a regression formula.10

Table 4: Example of Log Transformation

Dependent variable:

Population Size

(1) (2)

loggdp −4.708∗∗

(2.070)

I(log(gdpPercap)) −4.708∗∗

(2.070)

Constant 68.012∗∗∗ 68.012∗∗∗

(17.083) (17.083)

Observations 1,704 1,704
R2 0.003 0.003
Adjusted R2 0.002 0.002
Residual Std. Error (df = 1702) 106.028 106.028
F Statistic (df = 1; 1702) 5.172∗∗ 5.172∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

What effect does GDP per capita have on the outcome? Calculating marginal effects

reveals the answer. Because we have specified the transformation using I() notation in

model (2), margins can quickly identify the contribution of the original variable:

10The models are: (1) (pop ~loggdp and (2) pop ~I(log(gdpPercap)) .
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summary(margins(m3b))

## factor AME SE z p lower upper

## gdpPercap -0.0026 0.0012 -2.2742 0.0230 -0.0049 -0.0004

And this result will differ from that for model (2) except in the resulting z-statistic

and p-value which — as should be the case — are identical in the two marginal effect

calculations:

summary(margins(m3a))

## factor AME SE z p lower upper

## loggdp -4.7078 2.0701 -2.2742 0.0230 -8.7651 -0.6506

Despite some of the underlying limitations, Stata’s margins command is incredibly user

friendly and easy-to-use. Its output is also clean and intuitive. As a result, the behavior

of margins try (as closely as possible) to mimic the behavior. It does not attempt,

however, to provide: (1) an easy way of calculating MEMs (as Stata does with the ,

atmeans option), (2) calculating of predicted values (since R already provides this via

predict()), or (3) cover the full class of model types that Stata currently supports.

One other key advantage of the R implementation is that because it relies on a fully

functional programming paradigm, marginal effects can easily be calculated for multiple

objects, whereas Stata’s approach can only calculate effects for the previous modelling

command using stored results.

4 Conclusion

Average marginal effects offer an intuitive technique for interpreting regression estimates

from a wide class of linear and generalized linear models. While Stata has offered a

simple and general computational interface for extracting these quantities of interest

from regression models for many years, the approach has not been widely available in

other statistical software. The margins port to R makes this functionality much more

widely available. By describing the computational approach used by both packages, this

article offers users of other languages guidelines for how to apply the approach elsewhere

while offering applied data analysts a straightforward explanation of the marginal effect

quantity and its derivation.

At present,margins estimates quantities of interest for a wide array of model formulae

used in least squares regression and many common generalized linear models. Stata’s

margins and Zelig/Clarify produce quantities of interest for a wider array of model types.

Extension of margins to other model types is planned for the future. The creation of
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the core margins function as an S3 generic means that the package is easily extensible to

other model types (e.g., those introduced in other user-created packages). Development of

margins is handled on GitHub, allowing for easy contribution of bug fixes, enhancements,

and additional model-specific methods. By publishing margins as free and open-source

software (FOSS), it should be straightforward for users of other languages (Python, julia,

etc.) to implement similar functionality. Indeed, the port of closed source statistical

software to open source represents an underappreciated by critical step in making FOSS

data analysis more accessible to those used to working with closed source products.

For applied data analysis, the most important feature of margins is its intuitive use

and the near-direct translation of Stata code into R. For those used to Stata’s margins

command, R’s margins package should be a painless transition. For R users not accus-

tomed to calculating marginal effects, margins should also offer a straightforward and

tidy way of calculating predicted values and marginal effects, and displaying the results

thereof.
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